Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 40(12): e107471, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34008862

RESUMO

The key role of APP for Alzheimer pathogenesis is well established. However, perinatal lethality of germline knockout mice lacking the entire APP family has so far precluded the analysis of its physiological functions for the developing and adult brain. Here, we generated conditional APP/APLP1/APLP2 triple KO (cTKO) mice lacking the APP family in excitatory forebrain neurons from embryonic day 11.5 onwards. NexCre cTKO mice showed altered brain morphology with agenesis of the corpus callosum and disrupted hippocampal lamination. Further, NexCre cTKOs revealed reduced basal synaptic transmission and drastically reduced long-term potentiation that was associated with reduced dendritic length and reduced spine density of pyramidal cells. With regard to behavior, lack of the APP family leads not only to severe impairments in a panel of tests for learning and memory, but also to an autism-like phenotype including repetitive rearing and climbing, impaired social communication, and deficits in social interaction. Together, our study identifies essential functions of the APP family during development, for normal hippocampal function and circuits important for learning and social behavior.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Transtorno Autístico/genética , Animais , Transtorno Autístico/fisiopatologia , Comportamento Animal , Região CA1 Hipocampal/fisiologia , Feminino , Aprendizagem , Potenciação de Longa Duração , Masculino , Camundongos Knockout , Neurônios/fisiologia , Fenótipo , Prosencéfalo/citologia , Comportamento Social , Sinapses/fisiologia , Transmissão Sináptica
2.
Nat Commun ; 11(1): 1266, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152276

RESUMO

Endophilins-A are conserved endocytic adaptors with membrane curvature-sensing and -inducing properties. We show here that, independently of their role in endocytosis, endophilin-A1 and endophilin-A2 regulate exocytosis of neurosecretory vesicles. The number and distribution of neurosecretory vesicles were not changed in chromaffin cells lacking endophilin-A, yet fast capacitance and amperometry measurements revealed reduced exocytosis, smaller vesicle pools and altered fusion kinetics. The levels and distributions of the main exocytic and endocytic factors were unchanged, and slow compensatory endocytosis was not robustly affected. Endophilin-A's role in exocytosis is mediated through its SH3-domain, specifically via a direct interaction with intersectin-1, a coordinator of exocytic and endocytic traffic. Endophilin-A not able to bind intersectin-1, and intersectin-1 not able to bind endophilin-A, resulted in similar exocytic defects in chromaffin cells. Altogether, we report that two endocytic proteins, endophilin-A and intersectin-1, are enriched on neurosecretory vesicles and regulate exocytosis by coordinating neurosecretory vesicle priming and fusion.


Assuntos
Aciltransferases/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Endocitose/fisiologia , Sistemas Neurossecretores/metabolismo , Aciltransferases/genética , Animais , Células Cromafins/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistemas Neurossecretores/citologia
3.
Cell Rep ; 21(8): 2118-2133, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166604

RESUMO

Delivery of neurotrophins and neuropeptides via long-range trafficking of dense core vesicles (DCVs) from the cell soma to nerve terminals is essential for synapse modulation and circuit function. But the mechanism by which transiting DCVs are captured at specific sites is unknown. Here, we discovered that Synaptotagmin-4 (Syt4) regulates the capture and spatial distribution of DCVs in hippocampal neurons. We found that DCVs are highly mobile and undergo long-range translocation but switch directions only at the distal ends of axons, revealing a circular trafficking pattern. Phosphorylation of serine 135 of Syt4 by JNK steers DCV trafficking by destabilizing Syt4-Kif1A interaction, leading to a transition from microtubule-dependent DCV trafficking to capture at en passant presynaptic boutons by actin. Furthermore, neuronal activity increased DCV capture via JNK-dependent phosphorylation of the S135 site of Syt4. Our data reveal a mechanism that ensures rapid, site-specific delivery of DCVs to synapses.


Assuntos
Neurônios/metabolismo , Vesículas Secretórias/metabolismo , Sinaptotagminas/metabolismo , Animais , Axônios/metabolismo , Drosophila melanogaster , Sistema de Sinalização das MAP Quinases/fisiologia , Microtúbulos/metabolismo , Terminações Nervosas/metabolismo , Neuropeptídeos/metabolismo , Fosforilação , Terminações Pré-Sinápticas/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...